

Nigdi, Pune – 411 044

A.Y. 2023-24

Date:27.12.2023

Department: Mechanical Engineering Ref No:

Thermal Engineering Module

Semester: II

Course Outline								
Class: TY B Tech Name of the Course: Non - Conventional Energy Systems (PE								
Course type: PEC-III	Course Code: BME6503A							
Credits: 3	Examination Stru	Examination Structure						
	IE	MTE	ETE	Total				
	20	30	50	100				

Course relevance: The course covers vital aspects of renewable energy, focusing on solar, wind, biomass, geothermal, and tidal sources. It addresses global energy challenges, emphasizing practical applications, economic viability, and worldwide energy use. The course emphasizes practical applications, performance evaluation, and economic analysis, ensuring graduates are well-equipped to contribute meaningfully to the transition towards cleaner and sustainable energy solutions. The course cover a practical dimension to their skill set, enabling them to navigate the complexities of the renewable energy sector.

Prerequisites:

a. Fundamental concepts and laws/governing equations of b. Principles of Heat Transfer c. Elements of Electrical Engineering

СО	Statement	Learning	PO/ PSO	Tools for
		Level	Mapped	Assessment
CO1	Estimate solar radiation on a tilted surface.		PO1, PO6 PO7	MTE, IE1,
001		Apply	PO10 PSO1	ETE,
	Determine the fundamental performance of characteristics of solar		PO1, PO2,, PO3, PO4,	MTE, IE1,
CO2	thermal.	Analyze	PO10	ETE,
			PS01, P052	
	Determine the fundamental performance of characteristics of		PO1, PO2,, PO3, PO4,	MTE
03	photovoltaic energy generation.	Analyze	PO10 PSO1 POS2	
			1301,1032	
CO4	Estimate the potential of wind resources	_	PO1, PO2,, PO3,	IE2, ETE,
		Apply	PSO1, POS2	
COL	To differentiate various routes of biomass energy conversion		PO1, PO2, PO4, PSO1	IE2, ETE,
C05	systems and demonstrate their operation.	Apply		
	· ·			
C06	Illustrate the operation of geothermal and tidal power plants		PO1, PO2, PO4, PSO1	ETE
000	and determine their financial viability	Apply		

Table 1 Course Outcome and Mapping with POs and PSOs

Table 2 Internal Evaluation

CO	Statement	IE 1 Planning	IE 2	MTE
Weightages		10 (Unit 1, 2)	10 (Unit 4 <i>,</i> 5)	30 (Unit 1, 2,3)
1,2, 3	Estimate solar radiation on a tilted surface. Determine the fundamental performance of	After completion of Unit 1 and Unit 2 Students should submit the recorded videos on the topics from Unit 1 and Unit 2.		MTE

Ref No:

Pimpri Chinchwad Education Trust's Pimpri Chinchwad College of Engineering Sector No. 26, Pradhikaran,

Nigdi, Pune – 411 044

Department: Mechanical Engineering

A.Y. 2023-24 Thermal Engineering Module Date:27.12.2023

Semester: II

	characteristics of solar		
	thermal.		
4.5	Estimate the potential of wind	 After completion of	
, -	resources	Unit 4 and 5, Class	
	To differentiate various routes	quizzes to be	
	of biomass energy conversion	Multiple MCQ Type	
	systems and demonstrate their		
	operation.		

Table 3 Rubric for assessment of Internal Evaluation activities IE1

Criteria for assessment will be Time (20%), Presentation (40%), and Content (40%)										
Name of Activity	7-10 Marks	4-6 Marks	0-4 Marks							
Timely submission (20% weightage) (Ethics)	Timely submission	• After soft reminder	• After due date							
Content Quality (Technical) (40% weightage)	 Very good quality of referred material- book, report and research article. Analysis on the presented data 	 Moderate quality of referred material- book, report and research article. Moderate discussion on analysis on the presented data 	• No quality content from book, report and research article, only PPT preparation without analysis.							
Presentation Skill (Skill) (40% weightage)	Good PresentationPresentation in SlidesProper communication	 Presentation Presentation in Slides Proper communication 	 Improper Presentation Improper presentation in Slides Improper communication 							

Teaching Plan for Theory Sessions								Marks Distribu	tion						
	CO/	PO1	PO2	PO3	PO4	PO6	PO7	PSO1	PSO2	Total	СО	IE1	IE2	MTE	ETE
	PO	-									Out of	10	10	50	80
	CO1	3	1			1	1	1		7	Converted to	10	10	30	50
	CO2	2	2	1	0.5		0.5	1.5	0.5	8	CO1	5		15	5
	CO3	2	1	1.5	0.5		0.5	1.5		7	CO2	5		15	5
	CO4	3	2	1			1	1		8	CO3			20	5
	CO5	2	2	1			1	1		7	CO4		5		20
	CO6	3	2	1			1	1		8	CO5		5		20
		15	10	5.5	1	1	5	7	0.5	45	CO6				25

Dr. A. B. Lingayat Course faculty and Course Coordinator